
Supervised and Unsupervised Approaches to Content-Based

Recommendation Systems

Ryan Brown

January 2021

1 Summary

People are spending an increasing amount of time consuming media during the COVID-19 pandemic,
whether it is in the form of movies, shows, or books. About 80% of U.S. consumers now subscribe to
at least one paid video streaming service1, and the amount of time spent reading has nearly doubled
for adults in the UK2. More content consumption means more content recommendations for users, usu-
ally accomplished through collaborative filtering, where a system uses the tastes of similar users and
combines them to create a ranked list of recommendations. Platforms such as Netflix and Goodreads
use collaborative filtering; however, this paper aims to explore the usage, potential, and limitations of
content-based filtering for book recommendations. After testing unsupervised and supervised machine
learning models on a corpus of books derived from books I have read or want to read, this paper shows
that there is merit in looking further into a content-based approach for media recommendation.

2 Data Collection

The primary input for both the supervised and unsupervised models was book text. This is the case
because content-based filtering, as its name suggests, analyzes the actual content of a media and uses
various techniques to determine what other media are most similar to one the user liked. Goodreads
book blurbs were also collected from Goodreads.com to diversify text input and model classifications.

2.1 Book Text Corpus

The book text corpus began with the first 52 books that I finished reading this year. For each book I
indicated the author, genre, and whether I liked the book. Since I liked most of the books that I finished
(46/52), I added 14 books that I started but did not finish (and therefore disliked) to balance the classes.

The genre distribution of the corpus at this point was remarkably undiverse, with 49 science fiction
and 16 self-help books, as well as 1 mystery book. To help balance this, top titles from other distinctive
genres were added as well, including 10 self-help books, 24 mystery books, and 26 history books from
the top 100 books most shelved as that genre on Goodreads.

The .epub or .pdf version of each book was converted to a .txt file, where the first 900,000 characters
of each file were read into the corpus, starting at the 50,000th character. The total length is limited to
900,000 to stay under spaCy’s default max length for NLP parsing, and the first 50,000 characters are
skipped to bypass any forewords or table of contents. 50,000 was chosen because it equates to 16 full
pages of text, which was the largest amount of text seen before the book’s content began.

Figure 1: First five records in the book data dataframe

1Deloitte. (2020, June). Digital Media Trends 14th Edition.
2Nielsen Book. (2020, May). Monthly Consumer Research Survey.

1



This corpus will be referred to as book data for the rest of the paper.

2.2 Goodreads Corpus

To increase the sample size and diversify the number of genres, data was collected from Goodreads. 5
distinct genres were chosen: history, mystery, romance, science fiction, and self-help. For each of those
genres, web crawling was used to collect the title, blurb, and top shelved genres for the 100 books most
frequently shelved as that genre.

Books that appeared twice due to being in the top 100 for more than one genre were removed, as well
as books that had one of the other four classified genres in their “top shelved genres” list. These books
were removed because it’s unclear what genre they should fall under, and the model is being trained to
classify a single genre. The resulting corpus had 418 records.

Figure 2: First five records in the goodreads data dataframe

This corpus will be referred to as goodreads data for the rest of the paper.

3 Data Cleaning and Preprocessing

The text for both the books and the Goodreads blurbs required cleaning and preprocessing before
the models were trained. The primary objective of these processes was to improve data quality and
represent the data numerically so that scikit-learn models could use it as input. Data cleaning consisted
of GloVe vocab matching, punctuation removal, and stopword removal; data preprocessing consisted of
tokenization and vectorization.

3.1 GloVe

To initially clean the text of contractions, uncommon special characters, and typos, I looked at what
portion of the text was recognized by GloVe (Global Vectors for Word Representation)3. GloVe is trained
on over 2 million words of vocab, so words in the books not recognized by GloVe might need cleaning to
improve data quality.

For the book text, the majority of frequent out-of-vocab words—words in the text that weren’t recog-
nized by GloVe—were words with punctuation at the beginning or end. In the case of both book data
and goodreads data, because the punctuation provides useful context for how words were used, clean-
ing was not needed. Re.sub was used to clean all other out-of-vocab words with more than 50 occurrences,
which were mostly contractions, typos, or unrecognized special characters.

Finally, to confirm that the text was effectively cleaned, I looked at what the GloVe coverage would
be if words with punctuation attached to them had been cleaned.

Figure 3: GloVe coverages pre- and post-cleaning for book data

3https://nlp.stanford.edu/projects/glove/

2



For goodreads data, the initial uncleaned text was already largely covered by GloVe, so coverage
improvements from cleaning were minimal.

Figure 4: GloVe coverages pre- and post-cleaning for goodreads data

3.2 Tokenization

spaCy’s pretrained core web md4 model powered the tokenizer, first turning the text into a spaCy doc-
ument. Using the parts of speech tagging, spaCy can determine the lemma (e.g. walked walk) for each
token. The tokenizer simultaneously lemmatized and tokenized the docs, while also considering the POS
tag of each token.

There are two versions of the tokenizer. The first includes tokens for all parts of speech, while the
second only uses the following subset of tags: adjectives, adverbs, nouns, proper nouns, and verbs.
Tokens with these tags are the most significant in the sentence, so removing all other tokens should help
to reduce noise in the data. Finally, the tokenizer removed stop words and punctuation before returning
the list of tokens.

1 from spacy.lang.en.stop_words import STOP_WORDS

2 from string import punctuation

3 import en_core_web_md

4 nlp = en_core_web_md.load()

5 nlp.disable_pipes("ner", "parser")

6

7 desired_pos = ["ADJ", "ADV", "NOUN", "PROPN", "VERB"]

8

9 def pos_tokenizer(text):

10 doc = nlp(text)

11 tokens = [ word.lemma_.lower ().strip() for word in doc if word.pos_ in desired_pos ]

12 tokens = [ word for word in tokens if word not in STOP_WORDS and word not in

punctuations ]

13

14 return tokens

Listing 1: Code for pos tokenizer

3.3 Vectorization

For each modeling task, two different vector representations were tested: bag-of-words (BoW) and term
frequency inverse document frequency (TF-IDF). Each representation was tested using both tokenizers,
for a total of four possible preprocessing combinations. Both representations were implemented using
scikit-learn vectorizers.

1 from sklearn.feature_extraction.text import CountVectorizer , TfidfVectorizer

2

3 bow_vector = CountVectorizer(tokenizer = tokenizer)

4 bow_vector_pos = CountVectorizer(tokenizer = pos_tokenizer)

5 tfidf_vector = TfidfVectorizer(tokenizer = tokenizer)

6 tfidf_vector_pos = TfidfVectorizer(tokenizer = pos_tokenizer)

Listing 2: Code for vectorizers

4https://spacy.io/models/en/

3



4 Unsupervised Modeling

Unsupervised learning is the golden standard for content-based filtering. The user gives the model a
book that they liked (hereafter referred to as a “given book”), and the model compares the content of
that book to the content of all the other books it has in its repository. The books that it finds to be the
most similar (based on some similarity metric) are recommended to the user.

There are various ways to determine the similarity between two texts, four of which were tested in
this paper (including the two vectorizers mentioned in Section 3.3):

1. Scikit-learn’s CountVectorizer + cosine similarity

2. Scikit-learn’s TfidfVectorizer + cosine similarity

3. spaCy’s embedding-based text similarity system

4. Scikit-learn’s KNearestNeighbors model

4.1 Evaluation

There’s no concrete way to evaluate the accuracy of an unsupervised model. However, there are still
ways to estimate how effective an unsupervised model is. In this case, there are a couple of features that
the top recommendations should share with the given book, such as genre and series.

Because I can better validate the effectiveness of recommendations for books that I have read, all
models were tested on two different datasets: the entire book data corpus, and the subset of book data
where I started and finished the book, which will be referred to as finished books. For each dataset, I
examined the model’s recommendations for every possible given book and awarded points based on the
following factors:

book data

• Genre: The recommendations should be the same genre as the given book, since all genres present
are distinct. A linear amount from 0-1 was added to the model’s overall score based on the number
of the top 10 recommendations that are the same genre as the given book.

finished books

• Series: If the given book is part of a series, the other entries in the series should be top recommen-
dations, since the reader is likely to enjoy other books in the same series. A linear score from 0-1
was added to the model’s overall point total based on the recommendation position of the other
series entries. If the given book is not part of a series, a score of 0.5 was added.

• Topic: Topics exist within a genre, such as post-apocalyptic, space exploration, and quantum
physics being topics within science fiction. Recommendations should ideally have topics similar to
that of the given book. Topic is not a feature of the corpus, so I used discretion from having read
the books to add a score from 0-1 to the model’s overall point total based on the topic similarity
of the recommendations.

Series was not included as a scoring factor for book data because books that were not from the
same series were intentionally chosen to diversify the dataset. Genre was not included as a scoring factor
for finished books as to not double count books present in both datasets.

There were 130 books in the entire corpus and 52 in the subset (with 16 of those 52 not in a series),
meaning that the maximum overall point total for a model was (130 * 1) + (36 * 2) + (16 * 1.5) = 226.

This scoring system is not perfect, as it scores based on book characteristics that are easily accessible
without a model and does not look at the real usage of a recommendation. However, it evenly evaluates
the quality of the unsupervised recommendations across a large number of books. Thus, it is a proxy
for determining which of the four unsupervised models is the best, as well as evaluating the general
effectiveness of unsupervised-based recommendation systems as a whole.

4



4.2 CountVectorizer and cosine similarity

Cosine similarity is the most commonly used similarity function and was used in this paper because it
measures how similar each text is irrespective of size. It does this by measuring the cosine of the angle
between two vectors that are projected in a multi-dimensional space.

The similarity matrix was created using the following code:

1 from sklearn.metrics.pairwise import cosine_similarity

2

3 bow_vectorized = bow_vector_pos.fit_transform(book_data["text"])

4 bow_matrix = cosine_similarity(bow_vectorized , bow_vectorized)

Listing 3: Code to create similarity matrix

To get the recommendations for a particular book, the recommendation function indexed to the
corresponding row of the matrix, created a dataframe, and sorted it in descending order by similarity.
Below are sample recommendations for the given book Foundation by Isaac Asimov.

Figure 5: Top 10 recommendations for Foundation by Isaac Asimov

The model scores for CountVectorizer + cosine similarity are as follows:

Table 1: Model scores for CountVectorizer + cosine similarity
Genre Series Topic Total

88.40 / 130 43.25 / 44 28.20 / 52 159.85 / 226

4.3 TfidfVectorizer and cosine similarity

Following an identical process as in Section 4.2, the model scores for TfidfVectorizer + cosine similarity
are as follows:

Table 2: Model scores for TfidfVectorizer + cosine similarity
Genre Series Topic Total

64.80 / 130 40.50 / 44 23.00 / 52 128.30 / 226

4.4 K-Nearest Neighbors

An unsupervised K-Nearest Neighbors model was trained on the TF-IDF vectorized text using the
following code:

1 from sklearn.neighbors import NearestNeighbors

2

3 KNN = NearestNeighbors(n_neighbors =11, p=2)

4 KNN.fit(tfidf_vectorized)

Listing 4: Code for K-Nearest Neighbors model

5



The neighbors count was set to 11 because the first neighbor of any point is the point itself, and
the unsupervised scoring uses the top 10 recommendations for each given book. The model scores for
K-Nearest Neighbors are as follows:

Table 3: Model scores for K-Nearest Neighbors
Genre Series Topic Total

65.00 / 130 40.50 / 44 23.00 / 52 128.50 / 226

4.5 spaCy document similarity

When a text is represented as a spaCy document, its similarity to another spaCy document can be
computed by taking the average of the word vectors that compose the document. To get the preprocessed
book text as a spaCy doc, the text was converted twice: once in pos tokenizer, and again to get the
final list of documents. The similarity matrix was created using the following code:

1 texts = list(finished_books.text)

2 tokens_list = [pos_tokenizer(text) for text in texts]

3 doc_list = [nlp(’ ’.join(tokens)) for tokens in token_list]

4

5 spacy_matrix = []

6 for i in range(len(doc_list)):

7 row = [doc_list[i]. similarity(doc_list[j]) for j in range(len(doc_list))]

8 spacy_matrix.append(row)

Listing 5: Code for spaCy document similarity matrix

The model scores for spaCy document similarity are as follows:

Table 4: Model scores for spaCy document similarity
Genre Series Topic Total

110.00 / 130 43.75 / 44 35.60 / 52 189.35 / 226

4.6 Comparison

Below is a table comparing the scores of all four unsupervised models.

Table 5: Comparison of scores for all four models
Model Genre Series Topic Total
BoW 88.40 / 130 43.25 / 44 28.20 / 52 159.85 / 226

TF-IDF 64.80 / 130 40.50 / 44 23.00 / 52 128.30 / 226
KNN 65.00 / 130 40.50 / 44 23.00 / 52 128.50 / 226
spaCy 110.00 / 130 43.75 / 44 35.60 / 52 189.35 / 226

6



5 Supervised Modeling

Supervised modeling is not usually used in recommendation systems, because the recommendation system
does not have the labels required to train a supervised machine learning model. However, in this paper I
explore a unique case in that I have read a large number of books this year and know my taste for those
books.

Scikit-learn classification models were trained to classify whether or not I liked a particular book
based on its text. In production, this kind of supervised recommendation system functions differently
than an unsupervised model; instead of being given a book that the reader liked as input and giving
recommended books as output, it is given a book that the reader has not read yet as input and outputs
a prediction as to whether or not they will like the book. This would ideally prevent them from wasting
time starting books that they won’t enjoy, as I did with 14 books this year.

The models were also trained to classify more concrete attributes about the books based on their text,
such as genre and author. These models would not be used directly in production, but they demonstrate
the potential of what supervised machine learning models can accomplish using media content.

For each task, 6 different scikit-learn machine learning models known to perform well with text
classification were spot-checked:

1 from sklearn.linear_model import LogisticRegression , RidgeClassifier , SGDClassifier

2 from sklearn.neighbors import KNeighborsClassifier

3 from sklearn.naive_bayes import MultinomialNB

4 from sklearn.svm import SVC

5

6 models = {"Logistic Regression": LogisticRegression(solver="liblinear", max_iter =300),

7 "SVM": SVC(C=1.0, kernel="linear", degree=3, gamma="auto"),

8 "Naive Bayes": MultinomialNB (),

9 "KNeighbors": KNeighborsClassifier (),

10 "Ridge": RidgeClassifier (),

11 "SGD": SGDClassifier(loss="hinge", penalty="l2", alpha=1e-3)}

Listing 6: Code for six scikit-learn supervised classifiers

5.1 Evaluation

The accuracy of each model was estimated using either 2-fold or 5-fold stratified cross-validation, de-
pending on the size of each class. Stratified cross-validation was used because class distributions were
not always even, and the small sample size meant that without stratification, a randomly selected fold
could have a highly imbalanced class distribution that would skew results.

1 from sklearn.model_selection import StratifiedKFold , cross_val_score

2

3 num_folds = 5

4 cv = StratifiedKFold(num_folds)

5 accuracy = cross_val_score(estimator=pipe , X=X, y=y, cv=cv , scoring="accuracy")

Listing 7: Cross-validation code

The models were trained using all four preprocessing combinations (bag-of-words vs. TF-IDF, all
PoS tags vs. subset of tags). I used the mean and standard deviation of accuracy across all folds for the
best-performing preprocessing combination to determine the best model.

After determining the most effective model, it was evaluated against a baseline zero rule classifier
(implemented using scikit-learn’s DummyClassifier with a most frequent strategy) using a 5 x 2-fold
cross-validation paired t-test, proposed by Thomas Dietterich in 1998. This test helps determine whether
the model performance is significant, as a model that does not perform better than the baseline is not
useful. Accordingly, the relevant question is whether the trained models perform significantly better
than the baseline, not whether their performance is significantly different in either direction. Thus, the
prediction is that they will perform better than the baseline, and a one-tailed rather than a two-tailed t-
test is appropriate. The MLxtend implementation of the paired t-test automatically gives the two-tailed
p-value, so the resulting p-value was divided by two to get the one-tailed p-values for this paper.

An alpha of 0.1 as opposed to 0.05 was used, because the datasets used in this paper are small, so
the standard errors will be larger—a larger alpha helps capture significant differences in light of these
standard errors5.

5Lavrakas, P. J. (2008). Encyclopedia of survey research methods (Vols. 1-0). Thousand Oaks, CA: Sage Publications,
Inc. doi: 10.4135/9781412963947

7



5.2 Good vs. bad

5.2.1 Precision as a metric

Since good vs. bad is an imbalanced binary classification problem, just looking at accuracy does not
tell the full story. Precision was also measured, with “good” being the positive class. This decision was
made because the consequence of a false positive (incorrectly classifying a bad book as “good”) and a
false negative (incorrectly classifying a good book as “bad”) are not the same.

To better understand this disparity, consider how the model would function in production. The user
gives the model a book as input, and the model classifies that book as being either “good” or “bad”.
With a false negative, the user incorrectly misses out on a good book, but there are millions of other
books to choose from. A false positive, on the other hand, results in the user wasting time reading a
book that they don’t like. The reader’s time, rather than the number of potential books, is the limiting
factor; thus, measuring precision with “good” as the positive class helps with understanding the model’s
performance.

5.2.2 Results

The bag-of-words representation gave superior performance for classifying good vs. bad books; the mean
and standard deviation of accuracy and precision for each model are shown below.

Figure 6: Model performance for good vs. bad book classification

Below is the confusion matrix for the most accurate and precise model, Naive Bayes

Figure 7: Confusion matrix for Naive Bayes on good vs. bad book classification

The one-tailed p-value for accuracy was 0.2436, which is greater than the alpha of 0.1. Thus, I failed
to reject the null hypothesis that the Naive Bayes classifier and the baseline zero rule classifier have the
same accuracy. However, the one-tailed p-value for precision was 0.0919, which is less than the alpha of
0.1. Thus, the null hypothesis is rejected in favor of the alternative hypothesis, which states that the
Naive Bayes classifier is more precise than the baseline zero rule classifier.

8



5.3 Author

A subset of started books was used for this task, only including books by authors that had multiple
books present in the dataset. This subset, named author data, had 42 records. Because books with
authors that have as few as 2 books are included in author data, 2-fold cross-validation was used for
this task.

The bag-of-words representation gave superior performance for classifying the author of the book
based on the book’s text; the accuracy’s mean and standard deviation for each model are shown below.

Figure 8: Model performance for author classification

Below is the confusion matrix for the most accurate model, Naive Bayes.

Figure 9: Confusion matrix for Naive Bayes on author classification

The one-tailed p-value for accuracy was 0.002, which is less than the alpha of 0.1. Thus, the null
hypothesis is rejected in favor of the alternative hypothesis, which states that the Naive Bayes classifier
is more accurate than the baseline zero rule classifier.

9



5.4 Genre (Goodreads)

The TF-IDF representation gave superior performance for classifying different genres based on the book’s
Goodreads blurb; the accuracy’s mean and standard deviation for each model are shown below.

Figure 10: Model performance for Goodreads blurb genre classification

Below is the confusion matrix for the most accurate model, SGD (stochastic gradient descent).

Figure 11: Confusion matrix for SGD on Goodreads blurb genre classification

The one-tailed p-value for accuracy was 0.000004, which is less than the alpha of 0.1 for this task.
Thus, the null hypothesis is rejected in favor of the alternative hypothesis, which states that the SGD
classifier is more accurate than the baseline zero rule classifier.

10



5.5 Genre (book text)

The bag-of-words representation gave superior performance for classifying different genres based on the
book’s text; the accuracy’s mean and standard deviation for each model are shown below.

Figure 12: Model performance for book text genre classification

Below is the confusion matrix for the most accurate model, SVM (support vector machine).

Figure 13: Confusion matrix for SGD on book text genre classification

The one-tailed p-value for accuracy was 0.00095, which is less than the alpha of 0.05. Thus, the null
hypothesis is rejected in favor of the alternative hypothesis, which states that the SVM classifier is more
accurate than the baseline zero rule classifier.

11



6 Discussion

6.1 Unsupervised Modeling

Of the four unsupervised models, the spaCy document similarity model performed the best, with a total
score of 189.35 / 226. It had higher scores than the other three models in all three scoring categories,
but the largest variation was in the Genre score. The spaCy model had a genre score percentage of
84.6% (110/130), an average of about 8.5 books out of the 10 recommended being the same genre as the
given book. The BoW model was in the middle with a genre score percentage of 68% (88.4/130), or 7
books out of 10, and the TF-IDF and KNN models were at the bottom, with a genre score percentage
of 50% (65/130), or 5 books out of 10. While recommending books of the same genre is a good proxy
for the performance of these models, it is not very useful on its own. It would be very simple to filter
the recommendations by genre of the given book, rendering genre discrimination nearly useless.

The TF-IDF and KNN models had almost identical scores in all three categories, likely due to the
fact that the KNN model was trained on a TF-IDF vector representation of the text. A potential
reason for the poor performance of these models is that the usage of inverse document frequency in their
vectorization resulted in certain “super recommendations”; books that often showed up in the top 10,
regardless of the given book. The super recommendations often did not match the genre or topic of the
given book, bringing down the score of both of these models.

The series and topic scores had much less variability than genre. Regardless of the quality of their
other recommendations, all four models had same-series books in their top 1-2 recommendations. This
is not surprising, since same-series books are written by the same author in a near-identical prose and
have the same proper nouns (characters, places, objects, etc). While the high scores in this category are
promising, they are not very insightful. A reader can easily find the next books in their series without
a recommendation system; thus, the recommendations beyond those same-series books are much more
important.

The topic score saw some variation but not nearly as much as genre. spaCy outperformed the other
models in this area, but was still far from a perfect score. A potential reason for this imperfection is
that the topic scoring was done ad-hoc; I did not go through before the scoring to determine how many
potential “similar topic” candidates each book had. Thus, the low scores across the board could be a
result of suboptimal score scaling rather than poor model performance. Despite this, the spaCy model’s
score of 35.6 / 52 was impressive in what is the most significant score category. Unlike genre and series,
the “topic” of a book is not clearly defined, so the utility of an unsupervised recommendation system for
finding similar-topic books is quite high.

Overall, the superior performance of the spaCy model makes sense; the document similarity function
considers the meaning of the words by comparing word vectors, rather than just looking at term frequen-
cies like the other models. For most given books in finished books, KNN and TF-IDF had identical
recommendations, BoW had an improved version of those recommendations, and then spaCy had an
entirely different set of recommendations that were much better. These recommendations sometimes
surprised me, as I had not thought about the similarities between the two books on my own but could
see them clearly now that the book was recommended to me.

The results of these unsupervised models are promising, especially considering the small scale this
paper uses. Given a large dataset of books, a content-based recommendation system powered by unsuper-
vised models could certainly be useful in practice. For example, Goodreads currently uses a collaborative
filtering approach to book recommendations. I have found them to be hit or miss; sometimes the sug-
gested books are similar and interesting, but sometimes they’re pretty far off from the book I am currently
reading. This dissimilarity is made possible by the fact that it’s basing the recommendations solely on
the tastes of other users. Combining their current system with an unsupervised, content-based approach
could help improve recommendation consistency.

6.2 Supervised Modeling

All four supervised modeling tasks had performances that were significant according to the 5 x 2-fold cross
validation paired t-tests. The BoW vector representation yielded better performances in three out of the
four modeling tasks, while the TF-IDF representation was superior for the only task that used the shorter
Goodreads blurbs as opposed to the longer book text. There’s no clear reason for this distinction, but
one factor to consider is that the book text contains frequent usage of proper nouns (character names,
common locations) that are fictional and have low document frequency. TF-IDF therefore alters the
weight of these words in the vector representation, whereas BoW does not. Additionally, the length and

12



diversity of the book text means that common words had a very high document frequency, while those
same words could have a medium or low document frequency in the Goodreads data because the blurbs
are so short.

Of the six models tested for each task, Naive Bayes had the highest performance on both the good
vs. bad classification task and the author classification task. This makes sense, because Naive Bayes
is known to have especially strong performance in NLP tasks compared to the other already strong
models. Additionally, both of the aforementioned tasks used a smaller subset of the data, and Naive
Bayes performs well with small amounts of data. This is the case because of its Naive nature, where
every word in a sentence or text is assumed to be independent of the others.

The other model with notable performance was the support vector machine (SVM). It had the highest
performance on the book text genre task and the second highest performance on the Goodreads genre
task. It makes sense that SVM was able to effectively group and classify distinct texts based on their
genre, since it finds a separating hyperplane to distinguish classes. Finally, the very poor performance
of K-Nearest Neighbors is explained by its dependence on a TF-IDF vector representation as compared
to BoW.

The most important of the four tasks in the context of a usable recommendation system is the
classification of good vs. bad books, which predicts whether or not the reader will enjoy a book based
on past books that they have read. While the accuracy for this task was not significant compared to
the zero-rule, the precision was. Especially when considering the use of a model like this in production,
where there would be thousands of books to draw from, the lower accuracy becomes negligible in the
face of high precision.

Because supervised models require the user to input a book, though, a model trained for this task
would not be very useful on its own. However, when combined with a traditional recommendation system,
it becomes much more powerful. The traditional system creates the initial list of book recommendations
based on a book that the user has read, then the supervised model pares that list down to books that
it predicts the user will like. A platform like Goodreads has easy access to the books the user has read
and their rating of those books, so implementation is feasible.

The other three tasks, while they show strong performance for the ability of a supervised model to
discern between different aspects that define a book, are not useful in practice. As mentioned in Section
6.1, the genre and author of a book are clearly defined and easily accessed by a model, so there’s no
need for classification of these features. However, expanding model classification potential to other less
accessible book traits, such as theme or topic, could aid in recommendation efforts. The hurdle for more
niche traits would be labeling a large number of books, but this could be overcome with the usage of a
smaller, manually-labeled subset and a semi-supervised model.

6.3 Overall Implications

There is a lot of potential in content-based recommendation systems that virtually no media platforms are
taking advantage of. It’s been shown in this paper that both unsupervised content-based recommendation
systems and user-specific supervised models can be used to give effective user recommendations for books.
While they need not replace collaborative filtering, using them in tandem with existing systems could
help improve the quality and consistency of recommendations that users receive.

7 Next Steps

A key next step to validate the results discussed in this paper is to use a larger dataset for the supervised
models that allows a test set to be held back. No test sets were used in this paper to help evaluate
the models’ performance because the datasets were small, so their results are subject to overfitting.
To better understand supervised model potential in production-level recommendation systems, having
a test set is crucial. Additionally, using nearly a million characters of text per book would likely be
computationally inefficient for a large number of books. The vectorization of the text is expensive, and
the vector representation for all books needs updating every time a book is added to account for new
vocabulary. Smaller portions of the text that maintain the content for modeling purposes likely exist,
and should be explored.

Finally, there are various extensions hinted at in this paper that begin to reap the benefits of alterna-
tive recommendation systems. These include combining unsupervised and supervised models as well as
training semi-supervised models on less accessible traits of a book, such as topic or theme. Alternative
recommendation approaches should also be explored in other media, such as movies and TV shows.

13


